Monday, 3 October 2016

RGPV TET Electronics & Communication Syllabus | Download RGPV TET EC Syllabus www.rgpv.ac.in

RGPV TET Electronics & Communication Syllabus | Download RGPV TET EC Syllabus

RGPV TET Electronics & Communication sYLLABUS


Networks: Network  graphs:  matrices  associated  with  graphs;  incidence,  fundamental  cut  set  and
fundamental  circuit  matrices.  Solution  methods:  nodal  and  mesh  analysis.  Network  theorems:
superposition, Thevenin and Norton's maximum power transfer, Wye-Delta transformation. Steady state
sinusoidal analysis using phasors. Linear constant coefficient differential equations; time domain analysis
of  simple  RLC  circuits,  Solution  of  network  equations  using  Laplace  transform:  frequency  domain
analysis of RLC circuits.
2-port network parameters: driving point and transfer functions. State equations
for networks.
Electronic Devices: Energy bands in silicon, intrinsic and  extrinsic silicon. Carrier transport in silicon:
diffusion  current,  drift  current,  mobility,  and  resistivity.  Generation  and  recombination  of  carriers.  p-n
junction  diode,  Zener  diode,  tunnel  diode,  BJT,  JFET,  MOS  capacitor,  MOSFET,  LED,  p -I-n  and
avalanche  photo  diode,  Basics  of  LASERs.  Device  technology:  integrated  circuits  fabrication  process,
oxidation,  diffusion,  ion  implantation,  photolithography,  n-tub,  p-tub  and  twin-tub  CMOS  process.
Analog  Circuits: Small  Signal  Equivalent  circuits  of  diodes,  BJTs,  MOSFETs  and  analog  CMOS.
Simple  diode  circuits,  clipping,  clamping,  rectifier.  Biasing  and  bias  stability  of  transistor  and  FET
amplifiers.  Amplifiers:  single-and  multi-stage,  differential  and  operational,  feedback,  and  power.
Frequency  response  of  amplifiers.  Simple  op-amp  circuits.  Filters.  Sinusoidal  oscillators;  criterion  for
oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits,
555 Timers. Power supplies.
Digital  circuits: Boolean  algebra,  minimization  of  Boolean  functions;  logic  gates;  digital  IC  families
(DTL,  TTL,  ECL,  MOS,  CMOS).  Combinatorial  circuits:  arithmetic  circuits,  code  converters,
multiplexers, decoders, PROMs and PLAs. Sequential circuits: latches and flip-flops, counters and shiftregisters.  Sample  and  hold  circuits,  ADCs,  DACs.  Semiconductor  memories.  Microprocessor(8085):
architecture, programming, memory and I/O interfacing.
Signals and Systems: Definitions and properties of Laplace transform, continuous-time and discrete-time
Fourier  series,  continuous-time  and  discrete-time  Fourier  Transform,  DFT  and  FFT,  z-transform.
Sampling theorem. Linear Time-Invariant (LTI) Systems: definitions and properties; causality, stability,
impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group
delay, phase delay. Signal transmission through LTI systems.
Control Systems: Basic control system components; block diagrammatic description, reduction of block
diagrams. Open loop and closed loop (feedback) systems and stability analysis of these systems. Signal
flow graphs and their use in determining transfer functions of systems; transient and steady state analysis
of LTI control systems and frequency response. Tools and techniques for LTI control system  analysis:
root loci,  Routh-Hurwitz  criterion,  Bode  and  Nyquist  plots.  Control  system  compensators:  elements  of
lead  and  lag  compensation,  elements  of  Proportional-Integral-Derivative  (PID)  control.  State  variable
representation and solution of state equation of LTI control systems.
Communications: Random signals and noise: probability, random variables, probability density function,
autocorrelation, power spectral density. Analog communication systems: amplitude and angle modulation
and demodulation systems, spectral analysis of these operations, superheterodyne receivers; elements of
hardware,  realizations  of  analog  communication  systems;  signal-to-noise  ratio  (SNR)  calculations  for
amplitude modulation (AM) and frequency modulation (FM) for low noise conditions. Fundamentals of
information theory and channel capacity theorem. Digital communication systems: pulse code modulation
(PCM), differential pulse code modulation (DPCM), digital modulation schemes: amplitude, phase and
frequency shift keying schemes (ASK, PSK, FSK), matched filter receivers, bandwidth consideration and
probability  of  error  calculations  for  these  schemes.  Basics  of  TDMA,  FDMA  and  CDMA  and  GSM.
Electro-magnetics: Elements  of  vector  calculus:  divergence  and  curl;  Gauss'  and  Stokes'  theorems,
Maxwell's  equations:  differential  and  integral  forms.  Wave  equation,  Poynting  vector.  Plane  waves:
propagation  through  various  media;  reflection  and  refraction;  phase  and  group  velocity;  skin  depth.
Transmission  lines:  characteristic  impedance;  impedance  transformation;  Smith  chart;  impedance
matching;  S  parameters,  pulse  excitation.  Waveguides:  modes  in  rectangular  waveguides;  boundary
conditions;  cut-off  frequencies;  dispersion relations. Basics  of propagation in  dielectric  waveguide  and
optical fibers. Basics of Antennas: Dipole antennas; radiation pattern; antenna gain

RGPV TET, RGPV TET Admit Card, RGPV TET Form Online, RGPV TET Exam Fee, RGPV TET exam Centers, RGPV TET Result, RGPV TET Syllabus, RGPV TET Mechanical Syllabus, RGPV TET EC Syllabus, RGPV TET CS Syllabus, RGPV TET IP Syllabus, RGPV TET Chemical engineering syllabus, RGPV TET Physics Syllabus, RGPV TET Chemistry Syllabus, RGPV TET EX syllabus, RGPV TET Civil Syllabus,

Share This
Previous Post
Next Post

Pellentesque vitae lectus in mauris sollicitudin ornare sit amet eget ligula. Donec pharetra, arcu eu consectetur semper, est nulla sodales risus, vel efficitur orci justo quis tellus. Phasellus sit amet est pharetra

0 comments: