RGPV TET Electrical Engineering Syllabus | Download RGPV TET EE Syllabus www.rgpv.ac.in

RGPV TET Electrical & Electronics Engineering Syllabus / RGPV TET Electrical Engineering Syllabus

Electric Circuits and Fields: Network graph, KCL, KVL, node and mesh analysis, transient response of
dc and ac networks; sinusoidal steady-state analysis, resonance, basic filter concepts; ideal current and
voltage sources, Thevenin's, Norton's and Superposition and Maximum Power Transfer theorems, twoport networks, three phase circuits; Gauss Theorem, electric field and potential due to point, line, plane
and spherical charge distributions; Ampere's and Biot-Savart's laws; inductance; dielectrics; capacitance.
Signals  and  Systems: Representation  of  continuous  and  discrete-time  signals;  shifting  and  scaling
operations; linear, time-invariant and causal systems; Fourier series representation of continuous periodic
signals; sampling theorem; Fourier, Laplace and Z transforms.

Electrical Machines: Single phase transformer -  equivalent circuit, phasor diagram, tests, regulation and
efficiency;  three  phase  transformers  -  connections,  parallel  operation;  auto-transformer;  energy
conversion  principles;  DC  machines  -  types,  windings,  generator characteristics,  armature reaction  and
commutation,  starting  and  speed  control  of  motors;  three  phase  induction  motors  -  principles,  types,
performance  characteristics,  starting  and  speed  control;  single  phase  induction  motors;  synchronous
machines  -  performance,  regulation  and  parallel  operation  of  generators,  motor  starting,  characteristics
and applications; servo and stepper motors.
Power  Systems: Basic  power  generation  concepts;  transmission  line  models  and  performance;  cable
performance,  insulation;  corona  and  radio  interference;  distribution  systems;  per-unit  quantities;  bus
impedance  and  admittance  matrices;  load  flow;  voltage  control;  power  factor  correction;  economic
operation;  symmetrical  components;  fault  analysis;  principles  of  over-current,  differential  and  distance
protection;  solid  state  relays  and  digital  protection;  circuit  breakers;  system  stability  concepts,  swing
curves  and  equal  area  criterion;  HVDC  transmission  and  FACTS  concepts.
Control  Systems: Principles  of  feedback;  transfer  function;  block  diagrams;  steady-state  errors;  Routh
and  Niquist  techniques;  Bode  plots;  root  loci;  lag,  lead  and  lead-lag  compensation;  state  space  model;
state transition matrix, controllability and observability.
Electrical  and  Electronic  Measurements: Bridges  and  potentiometers;  PMMC,  moving  iron,
dynamometer and induction type instruments; measurement of voltage, current, power, energy and power
factor;  instrument  transformers;  digital  voltmeters  and  multimeters;  phase,  time  and  frequency
measurement; Q-meters; oscilloscopes; potentiometric recorders; error analysis.
Analog  and  Digital  Electronics: Characteristics  of  diodes,  BJT,  FET;  amplifiers  -  biasing,  equivalent
circuit  and  frequency  response;  oscillators  and  feedback  amplifiers;  operational  amplifiers  -characteristics  and  applications;  simple  active  filters;  VCOs  and  timers;  combinational  and  sequential
logic  circuits;  multiplexer;  Schmitt  trigger;  multi-vibrators;  sample  and  hold  circuits;  A/D  and  D/A
converters; 8-bit microprocessor basics, architecture, programming and interfacing.
Power  Electronics  and  Drives: Semiconductor  power  diodes,  transistors,  thyristors,  triacs,  GTOs,
MOSFETs and IGBTs - static characteristics and principles of operation; triggering circuits; phase control
rectifiers; bridge converters  -  fully controlled and half controlled; principles of choppers and inverters;
basis concepts of adjustable speed dc and ac drives.